Журнал «Экономические стратегии», ключевое слово: «когнитивно-рефлексивная модель»


Neurocommunity — это будущее человечества?

DOI: https://doi.org/10.33917/es-5.185.2022.42-51

Нейроцифровые технологии качественно и количественно расширяют возможности управления поведением человека, создавая условия для обеспечения целевого когнитивно-психологического состояния как отдельной личности, так и групп в рамках neurocommunity. Одним из ключевых векторов приложения таких новых возможностей управления является импринтинг человеку положительного восприятия окружающей реальности, что способствует поддержанию социально-политической стабильности в государстве и обществе, а также повышает работоспособность отдельных сотрудников и их коллективов. Выявление психосемантических качеств личности на основе анализа ее интересов и предпочтений позволяет сформировать и импринтировать адаптированную к конкретному человеку когнитивно-рефлексивную модель идентификации и интерпретации происходящего, служащую источником действий этого человека и групп его единомышленников и обеспечивающую стабильность социума, который постепенно приобретает черты neurocommunity.

Источники: 

1. Vannevar Bush. As We May Think [Электронный ресурс] // The Atlantic. URL: https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/?single_page=true.

2. Агеев А.И. Головокружение интеллекта [Электронный ресурс] // Экономические стратегии. 2019. № 5 (163). С. 5. DOI: 10.33917/es-5.163.2019.5.

3. Денисов А.А., Саблин В.А. Результаты апробации системы управления в постиндустриальных технологических средах // Международный научно-исследовательский журнал «Евразийский союз ученых». 2020. № 10 (79). С. 16–21. (Серия: Технические науки.)

4. Лепский В.Е. Проблема сборки субъектов в информационных войнах // Информационные войны. 2019. № 4 (52). С. 2–8.

5. Логинов Е.Л. Использование технологий BIG DATA для противодействия массовым беспорядкам в условиях недостатка информации и неопределенности развития ситуации // Искусственный интеллект (большие данные) на службе полиции: Сб. статей международной научно-практической конференции. М.: Академия управления МВД России, 2020. С. 145–150.

Сетевое нейрокогнитивное управление сложноорганизованными структурами с политической компонентой в нечетких информационных средах

В статье рассматривается организация информационно-сетевых мероприятий, ориентированных на защиту ключевых точек политического управления жизненно важными функциями государства на основе информационно-вычислительных инструментов оперирования рабочими параметрами нейросетевого мониторинга и изучения совокупности данных о процессах, влияющих на личность. Обоснована необходимость использования интеллектуальных средств нечеткой логики и нейронных сетей для поддержки государственных систем контрразведки, наблюдения и политического управления в отношении субъектов, доступных для идентификации, цифрового описания и анализа их социопатичности по отношению к государственным институтам политического управления. Осуществляется нейросетевой синтез цифровых матриц ключевых когнитивных и психосемантических показателей отдельных людей и их групп для выявления реакций на пакет политической информации любого, пользующегося электронными коммуникативными сервисами, субъекта. На этой основе реализуются меры по управлению метастабильными состояниями его личности и конфигурирования когнитивных и психосемантических механизмов интерпретации действительности в условиях доминирования неучтенных факторов информационного характера (информационные раздражители).

Источники:

1.    Агапов В.С., Хаидов С.К. Корреляты показателей когнитивного компонента системы личностно-профессиональных качеств муниципальных служащих // Акмеология. 2015. № 4 (56). С. 46-51.

2.    Агеев А.И., Логинов Е.Л. Нейроменеджмент личности. М.: Институт экономических стратегий, 2019. 290 с.

3.    Агеев А.И., Логинов Е.Л., Шкута А.А. Конвергентный мониторинг и программирование личности как инструмент оперирования интеллектуальной динамикой поведения больших групп людей // Экономические стратегии. 2018. Т. 20. № 2 (152). С. 70-87.

4.    Вайднер Е.В., Толмачев А.В. Социологический анализ методов государственных переворотов // Наука и Образование. 2019. № 2. С. 369.

5.    Евсеев В.О. Моделирование вероятности государственно-политических переворотов и их экономических последствий // ЦИТИСЭ. 2019. № 2. С. 11.

6.    Иванова М.И., Мощенко И.Н. Анализ групповой протестной активности // Инженерный вестник Дона. 2015. № 3 (37). С. 78.

7.    Корниенко О.Ю. Нейролингвистическое программирование в маркетинге и СМИ // Экономика и управление: проблемы, решения. 2016. Т. 2. № 7. С. 117-121.

8.    Коротаев А.В., Цирель С.В., Билюга С.Э. Kоррупция, ценности и попытки насильственных изменений государственной власти в странах с различным уровнем ВВП на душу населения: опыт количественного компаративного и корреляционного анализа // Сравнительная политика. 2019. Т. 10. № 1. С. 98-123.

9.    Котельникова Е.В. Ситуационное когнитивное моделирование синтетической групповой коммуникации // Национальная Ассоциация Ученых. 2015. № 2-7 (7). С. 51-54.

10. Литовкин Д.В., Аникин А.В., Кульцова М.Б., Ляпина О.Н. Построение онтологического представления когнитивно-информационного пространства для задачи тематического поиска // Известия Волгоградского государственного технического университета. 2015. № 13 (177). С. 69-74.

11. Логинов Е.Л., Райков А.Н., Шкута А.А. Использование нейротехнологий при программировании когнитивно-поведенческих стереотипов действий личностей для устойчивого функционирования систем управления социумом // Нейрокомпьютеры: разработка, применение. 2018. № 9. С. 34-45.

12. Лосева Е.Д., Антамошкин А.Н. Алгоритм автоматизированного формирования ансамблей нейронных сетей для решения сложных задач интеллектуального анализа данных // Известия Тульского государственного университета. Технические науки. 2017. № 4. С. 234-243.

13. Манойло А.В. Концептуальные и организационные основы противодействия цветным революциями в Российской Федерации и на постсоветском пространстве // Мировая политика. 2016. № 1. С. 1-5.

14. Морева Г.И., Сотруева В.Б. Ценностные ориентиры и личностная зрелость у молодых людей с разной степенью политической активности // Вестник Тюменского государственного университета. Гуманитарные исследования. Humanitates. 2016. Т. 2. № 1. С. 239-252.

15. Муравьева С.В., Пронина М.В., Моисеенко Г.А., Пневская А.Н., Поляков Ю.И., Кропотов Ю.Д., Пронин С.В., Шелепин Е.Ю., Шелепин Ю.Е. Исследование зрительных когнитивных нарушений при шизофрении на ранних стадиях заболевания и их коррекция при помощи интерактивных виртуальных сред // Физиология человека. 2017. Т. 43. № 6. С. 24-36.

16. Назаров А.Н., Назаров М.А., Пантюхин Д.В., Сычев А.К., Покрова С.В. Автоматизация процедур мониторинга в web-пространстве на основе нейро-нечёткого формализма // T-Comm: телекоммуникации и транспорт. 2015. №8. С.26-33.

17. Пак Н.И., Степанова Т.А., Гаврилова И.В. Ментальная платформа развития многомерного алгоритмического мышления // Педагогическая информатика. 2018. № 4. С. 25-37.

18. Расследование Das Magazin: как BIG DATA и пара ученых обеспечили победу Трампу и Brexit [Электронный ресурс] // https://theins.ru/politika/38490 (Дата обращения: 20.08.2019).

19. Семченков А.С. Технологии противодействия внутренним и трансграничным угрозам политической стабильности // Новая наука: От идеи к результату. 2016. № 2-3. С. 53-56.

20. Сиражудинова С.В. Управление конфликтом: протестная политика и гражданское общество в современном мире // Информационные войны. 2016. № 4 (40). С. 37-42.

21. Толстых Н.Н., Степанец Ю.А., Мордовин А.И., Ролдугин Н.Г., Артемов М.В., Поздышева О.В. Концепция перехвата управления инфокоммуникационной системы // Специальная техника. 2017. № 1. С. 30-38.

22. Улюкин И.М., Киселева Н.В., Костин Д.В., Березовский А.В., Орлова Е.С. Структура личности у лиц молодого возраста // Вестник Российской военно-медицинской академии. 2019. № 1 (65). С. 153-156.

23.Фомин В.Н. Рекуррентное оценивание и адаптивная фильтрация. М.: Наука. Гл. ред. физ.-мат. лит., 1984. 288 с.