Strategizing Education Development in the Context of Digital Transformation: European Experienc

DOI: 10.33917/es-2.194.2024.64-69

The COVID-19 pandemic has created a powerful additional incentive for digitalization of education. The article examines the example of strategizing education development through the prism of digitalization presented by the European Union. In the context of increasing global competition for talent in the IT field, the European Union recognizes the current pace of IT personnel training as insufficient and aims to introduce effective measures to attract IT talent from all over the world. This poses a threat of intensified “brain drain” from Russia, which must be taken into account when strategizing the education development in Russia.

References:

1. Good K.D. Multimedia. Digital Roots: Historicizing Media and Communication Concepts of the Digital Age. In G. Balbi, N. Ribeiro, V. Schafer, &C. Schwarzenegger (Eds.). Berlin, De Gruyter, 2021, pp. 59–75.

2. Rensfeldt A.B., Rahm L. Automating Teacher Work? A History of the Politics of Automation and Artificial Intelligence in Education. Postdigital Science and Education, 2023, vol. 5, pp. 25–43. DOI: ht tps://doi.org/10.1007/s42438-022-00344-x

3. European Commission. Communication from the Commission to the European Parliament, the Council, the European economic and social committee and the Committee of the regions 2030 Digital Compass: the European way for the Digital Decade. Brussels, 9.3.2021 COM(2021) 118 final. Brussels:

European Commission, 2021, available at: https://commission.europa.eu/system/files/2023-01/cellar_12e835e2-81af-11eb-9ac9-01aa75ed71a1.0001.02_DOC_1.pdf

4. Makarov V.L., Bakhtizin A.R., Sushko E.D. Agent-orientirovannye modeli kak instrument aprobatsii upravlencheskikh resheniy [Agent-based Models as a Testing Tool for Management Decisions]. Upravlencheskoe konsul’tirovanie, 2016, no 12(96), pp. 16–25.

5. Makarov V.L., Bakhtizin A.R., Sushko E.D., Ageeva A.F. Modelirovanie epidemii COVID-19 — preimushchestva agent-orientirovannogo podkhoda [Simulation of the COVID-19 Epidemic – Advantages of an Agent-Based Approach]. Ekonomicheskie i sotsial’nye peremeny: fakty, tendentsii, prognoz, 2020, vol. 13, no 4, pp. 58–73.

6. Kvint V.L. Strategicheskoe upravlenie i ekonomika na global’nom formiruyushchemsya rynke [Strategic Management and Economics in a Global Emerging Market]. Moscow, Biznes Atlas, 2012, 626 p.

7. Kvint V.L. Ideya noosfery Vernadskogo i zakonomernosti, predopredelyayushchie formirovanie global’nogo noosfernogo miroporyadka XXI v. [Vernadsky’s Concept of the Noosphere and the Patterns that Predetermine Formation of the Global Noospheric World Order of the 21st Century]. Upravlencheskoe konsul’tirovanie, 2013, no 5(53), pp. 13–19.

8. European Council. EUCO 14/17 CO EUR 17 CONCL 5. Brussels, European Council, 19 October 2017, available at: https://www.consilium.europa.eu/media/21620/19-euco-final-conclusions-en.pdf

9. Kvint V. Strategy for the Global Market: Theory and Practical Applications. N.Y., L., Routledge-Taylor & Francis, 2015.

Scientific and Methodological Approaches to the Problem of Creating a Model of an Enterprise’s Digital Twin

DOI: 10.33917/es-2.194.2024.54-63

The article dwells on scientific and methodological approaches to solving the problem of forming a model of a digital twin of an enterprise, the production process, products and resources at all stages of the life cycle, when all departments involved in development, production, operation, including repair work, are represented in the form of a computer network that unites the combined elements of three types: sensors (detectors), factors (actuators and devices), control and management bodies. Proposed scientific-methodological approaches and principles of a “virtual enterprise” modeling are quite universal since they permit to provide a reflection and mathematical description of the dynamics of changes in the performance of an enterprise, its divisions and transformation of properties and characteristics of high-tech products that occur during the production process.

References:

1. Gubinskiy A.M. Upravlenie tekhnologicheskim razvitiem v sfere oborony i bezopasnosti Rossii, SShA i Kitaya: istoricheskie aspekty i sovremennyy opyt [Managing Technological Development in the Sphere of Defence and Security of Russia, the USA and China: Historical Aspects and Modern Experience: Russia]. Vol. I. Rossiya. Moscow, Izdatel’skie resheniya, 2021, 626 p.

2. Computing Curricula 2005. The Overview Report. ACM and IEEE Computer Society, 2005, 62 p.

3. Bratukhin A.G., Dmitriev V.G. Strategiya, kontseptsiya, printsipy CALS: Rossiyskaya entsiklopediya CALS. Aviatsionno-kosmicheskoe mashinostroenie [Strategy, Concept, CALS Principles: Russian Encyclopedia of CALS: Aerospace Mechanical Engineering]. Moscow, OAO “NITs ASK”, 2008, pp. 15–26.

4. Kovshov A.N., Nazarov Yu.F., Ibragimov I.M., Nikiforov A.D. Informatsionnaya podderzhka zhiznennogo tsikla izdeliy mashinostroeniya: printsipy, sistemy i tekhnologii CALS/IPI [Information Support for the Life Cycle of Mechanical Engineering Products: Principles, CALS/IPI Systems and Technologies]. Ucheb. posobie dlya studentov vuzov. Moscow, Akademiya, 2007, 304 p.

5. Deryabin N.I., Kuprikov M.Yu., Markin L.V., Deniskin Yu.I., Bragintseva L.M., Evdokimenko V.N., Latysheva V.V. Kadrovoe obespechenie: Rossiyskaya entsiklopediya CALS: Aviatsionno-kosmicheskoe mashinostroenie [Personnel Support: Russian Encyclopedia of CALS: Aerospace Engineering]. Moscow, OAO “NITs ASK”, 2008, pp. 557–575.

6. Zhamoydik T.I., Revyakov G.A. Nauchno-metodicheskie podkhody k resheniyu zadachi modelirovaniya predpriyatiya na baze kontseptual’nykh polozheniy tsifrovykh tekhnologiy: Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy [Scientific-methodological Approaches to Solving the Problem of Enterprise Modeling Based on the Conceptual Provisions of Digital Technologies: Rocket-space instrument engineering and information systems]. Vol. 8, vyp.

2. Moscow, RKS, 2021, pp. 32–42.

7. Vice Admiral Arthur K. Cebrowski, U.S. Navy, and John J. Garstka. Network-Centric Warfare: Its Origin and Future. January 1998.

Artificial Intelligence and Supercomputing Technologies

DOI: 10.33917/es-2.194.2024.42-53

While the physical basis of natural intelligence is the human brain, the physical basis of artificial intelligence (AI) is constituted by computers. Currently, the processes of creating AI based on computer technology are developing in two main directions — logical direction and neuromorphic one. The logical approach is aimed at creating computer systems designed to solve one or a limited set of “intelligent” problems (that is, problems whose solution would require intelligence if they were solved by a person). The neuromorphic approach aims to create computer systems that imitate the human brain functioning, and ultimately to create its artificial analogue.

References:

1. Yangging Jia. Technical Report. No. VCB/EECS 2014-93, Berkley.

2. Kalyaev I.A., Levin I.I., Semernikov E.A., Shmoilov V.I. Reconfigurable Multipipeline Computing Structures. Nova Science Publishers, Inc. USA. 2012. 340 p.

3. Guzik V.F., Kalyaev I.A., Levin I.I. Rekonfiguriruemye vychislitel’nye sistemy [Reconfigurable Computing Systems]. Rostov n/D, Izd-vo YuFU, 2016, 472 p.

4. Kalyaev I.A., Levin I.I. Rekonfiguriruemye vychislitel’nye sistemy na osnove PLIS [Reconfigurable Сomputing Systems Based on FPGAs]. Rostov n/D, Izd-vo YuNTs RAN, 2022, 475 p.

5. Spall J., Guo X., Barrett T.D., Lvovsky A.I. Fully reconfigurable coherent optical vector-matrix multiplication. Optics Letters, 45, 5752–5755 (2020).

6. Tait A.N., de Lima T.F., et al. Neuromorphic photonic networks using silicon photonic weight banks. Scientific Reports, 7, 7430 (2017).

7. Shen Y., Harris N.C., et al. Deep learning with coherent nanophotonic circuits. Nature Photon, 11(7), pp. 441–446 (2017).

8. Golovastikov N.V., Dorozhkin P.S., Soyfer V.A. Intellektual’nye tekhnicheskie sistemy na osnove fotoniki [Intelligent Technical Systems Based on Photonics]. Ontology of Designing, 2021, vol. 11, pp. 422–436.

9. Mikhaylov A.N., Gryaznov E.G., Lukoyanov V.I., Koryazhkina M.N., Bordanov I.A., Shchanikov S.A., Tel’minov O.A., Ivanchenko M.V., Kazantsev V.B. Na puti k realizatsii vysokoproizvoditel’nykh vychisleniy v pamyati na osnove memristornoy elektronnoy komponentnoy bazy [Towards the Implementation of High-performance Computing in Memory Based on Memristor Electronic Components]. Fizmat, 2023, vol. 1, no 1, pp. 42–64, DOI: 10.56304/S0000000023010021

10. Mikhaylov A.N., Gryaznov E.G., Koryazhkina M.N., Bordanov I.A., Shchanikov S.A., Telminov O.A., Kazantsev V.B. Neuromorphic computing based on CMOS-integrated memristive arrays: current state and perspectives. Supercomputing Frontiers and Innovations, 2023, vol. 10, no 2, pp. 77–103, DOI: 10.14529/jsfi230206

11. Dongarra J. Less Moor, more Brain. Moskovskiy superkomp’yuternyy forum, MGU, 2019.

12. Iskusstvennyy intellekt uvelichil moshchnost’ Superkomp’yuternogo tsentra “Politekhnicheskiy”. Saint Petersburg, SPbPU Petra Velikogo, Nauka i innovatsii, 22 dekabrya 2023 g. [Artificial Intelligence Has Increased the Capacity of the Polytechnic Supercomputer Center. St. Petersburg, Peter the Great St. Petersburg Polytechnic University. Science and Innovation, December 22, 2023], available at: https://www.spbstu.ru/media/news/nauka_i_innovatsii/
iskusstvennyy-intellekt-uvelichil-moshchnost-superkompyuternogo-tsentra-politekhnicheskiy/

Strategic Planning in the Face of Digital Transformation Challenges

DOI: 10.33917/es-1.193.2024.54-61

High dynamics of geopolitical changes, enhanced by expansion of the range of challenges facing the country, have exposed new requirements for government and economic management. The speed with which these requirements should be realized raises the issue of the need for a technological breakthrough in the field of management. And the scale of shifts in the global economy requires special attention to strategic planning, raising its role in the public administration system to a level that will ensure all government bodies’ orientation towards achieving the goals of social development that are being formed right now.

The article dwells on the issues of strategic planning technologization, the challenges to which a new strategic planning system should respond, some risks of digital transformation of the public administration sector and possible directions for overcoming them.

References:

1. Aver’yanov M.A., Evtushenko S.N., Kochetova E.Yu. Tsifrovoe obshchestvo: novye vyzovy [Strategic Planning — Necessary Condition for Developing the Vital Activity of Modern Society]. Ekonomicheskie strategii, 2017, no 6, pp. 166–175.

2. Ukaz Prezidenta Rossiyskoy Federatsii ot 8 noyabrya 2021 g. N 633 “Ob utverzhdenii Osnov gosudarstvennoy politiki v sfere strategicheskogo planirovaniya v Rossiyskoy Federatsii” [Decree of the President of the Russian Federation of November 8, 2021 No. 633 “On approval of theFundamentals of State Policy in the Sphere of Strategic Planning in the Russian Federation”]. Garant, available at: https://www.garant.ru/products/ipo/prime/doc/402915816/

3. Putin prizval rasshirit’ natsional’nye tseli razvitiya [Putin called for expanding national development goals]. RIA Novosti, 2023, 21 dekabrya, available at: https://ria.ru/20231221/putin-1917226925.html?in=l

Technologies of the VIth Technological Order and Risks of Socio-Humanitarian Development in the Post-Industrial Era

DOI: 10.33917/es-1.193.2024.42-53

Particular attention is paid to assessing the consequences of the spread of transhumanism as an ideology aimed at using the high transformative potential of convergent technologies not in line with humanistic values, but for deforming effect on humans, society and nature, which creates conditions for increasing social inequality and implementation of a model of a new social order based on the principles of “cybernetic totalitarianism”. The author raises a question of the need to create an alternative to transhumanism theory, based on socio-humanism and noospherism, which will allow using the creative possibilities of convergent technologies (primarily nature-like ones) to form a nature-like (bio-like) technosphere, on the one hand, and on the other hand – to improve the quality of life and to overcome severe physical and mental illnesses of a human. The role of bioethics and biopolitics in reducing the environmental, biosocial and socio-humanitarian risks of using new technologies is assessed.

References:

1. Kondrat’ev N.D. Bol’shie tsikly kon”yunktury i teoriya predvideniya. Izbrannye trudy [Large Conjuncture Cycles and the Theory of Foresight. Selected works]. Moscow, Ekonomika, 2002, 767 p.

2. Dement’ev V.E. Tsikly Kondra’’eva i postindustrial’naya ekonomika [Kondratieff Cycles and Post-industrial Economy]. Ekonomicheskaya nauka sovremennoy Rossii, 2018, no 4, pp. 7–19.

3. Sokolova S.N. O nekotorykh zadachakh filosofii v kontekste perspektiv tekhnologizatsii cheloveka [On Some Philosophy Tasks in the Context of Human Technologization Prospects]. Izvestiya TGU. Gumanitarnye nauki, 2015, no 1, pp. 19–30.

4. Kas’yanov V.V. Sotsium i chelovek v usloviyakh nauchno-tekhnicheskogo progressa [Society and a Man in the Context of Scientific and Technological Progress]. Obshchestvo: sotsiologiya, psikhologiya, pedagogika, 2012, no 1, pp. 11–15.

5. Khristolyubova N.E., Khudorenko E.A. Zarubezhnyy opyt sotsial’nykh posledstviy nauchno-tekhnicheskogo razvitiya: mesto obrazovaniya [Foreign Experience of Social Consequences of Scientific-Technological Development: Place of Education]. Otkrytoe obrazovanie, 2016, vol. 20, no 3, pp. 61–68.

6. Koval’chuk M.V. Ideologiya prirodopodobnykh tekhnologiy [Ideology of Nature-Like Technologies]. Moscow, Fizmatlit, 2021, 336 p.

7. Koval’chuk M.V, Naraykin O.S, Yatsyshina E.B. Prirodopodobnye tekhnologii — novye vozmozhnosti i novye vyzovy [Nature-Like Technologies – New Opportunities and New Challenges]. Vestnik Rossiyskoy Akademii nauk, 2019, vol. 89, no 5, pp. 455–465, DOI: https://doi.org/10.31857/S0869-5873895455-465

8. Buyanova M.E. Identifikatsiya i otsenka stranovykh riskov razvitiya konvergentnykh tekhnologiy [Identification and Assessment of Country Risks in Developing Convergent Technologies]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Ekonomika, 2021, vol. 23, no 1, pp. 40–51, DOI: https://doi.org/10.15688/ek.jvolsu.2021.1.3

Forecast Merging

DOI: 10.33917/es-6.192.2023.68-69

Review of the book by A.A. Frenkel and A.A. Surkov “Forecasts Merging — an Effective Tool for Increasing Forecasting Accuracy”, dedicated to the analysis of accumulated knowledge about various approaches and methods for constructing a combined forecast. The book provides a forecast for manufacturing certain types of industrial products based on the use of various private and combined forecasting methods and makes a statistical comparison of their accuracy.

Technology of Data Information Space and Improvement of Public Administration

DOI: 10.33917/es-6.192.2023.62-67

The article examines possibilities of the ontological model and technology of the data information space and the ISIAD software product. This experience can be successfully used in the “Data Economy” national project.

References:

1. Ageev A.I., Kuz’min O.V., Perminova E.A. Informatsionnaya bezopasnost’ avtomatizirovannykh sistemy upravleniya proizvodstvennym i tekhnologicheskimi protsessami ob”ektov kriticheskoy informatsionnoy infrastruktu [Information Security of Automated Control Systems for Production and Technological Processes of Critical Information Infrastructure Facilities]. Ucheb. posobie. Moscow, MNIPU, 2021.

2. Ageev A.I., Bondarik V.N., Ivanova O.D., Kudryavtsev A.V., Loshchinin A.A. Tekhnokraticheskaya kontseptsiya proektov tsifrovoy ekonomiki: sinergiya integratsii sistem i dannykh [The Technocratic Concept of Digital Economy Projects: the Synergy of Integration of Systems and Data]. Mikroekonomika, 2018,

no 5, pp. 14–21.

3. Ageev A.I., Grabchak E.P., Loginov E.L., Chinaliev V.U. Tsifrovaya platforma upravleniya nauchno-tekhnologicheskim razvitiem v prostranstve ekonomicheskogo sotrudnichestva [Digital Platform for Managing Scientific and Technological Development within Economic Cooperation Framework].

Ekonomicheskie strategii, 2023, no 1, pp. 56–69, DOI: https://doi.org/10.33917/es-1.187.2023.56-69

4. Loshchinin A.A., Bondarik V.N., Kudryavtsev A.V. Nekotorye informatsionno-tekhnologicheskie aspekty tsifrovoy ekonomiki [Some Information and Technological Aspects of the Digital Economy]. Mikroekonomika, 2017, no 4, pp. 67–71.

5. Ageev A.I., Radina V.Ya. Metodika tsifrovoy ekonomiki v chasti upravleniya i kontrol’noy deyatel’nosti v real’nom sektore ekonomiki [Methods of Digital Economy in Terms of Management and Control Activities in the Real Economy]. Ekonomicheskie strategii, 2019, no 3, pp. 44–56, DOI: 10.33917/es-3.161.2019.44-56

6. Loshchinin A.A. Informatizatsiya v administrativnykh sistemakh [Informatization in Administrative Systems]. Moscow, 1999.

7. Loshchinin A.A. Bol’shaya informatizatsiya malykh territoriy [Big Informatization of small Territories]. Informatsionnye tekhnologii territorial’nogoupravleniya, 2002, no 36.

8. Loshchinin A.A. Tekhnologii informatizatsii administrativnykh organov territoriy [Technologies for Informatization of Administrative bodies of Territories].

Informatika i vychislitel’naya tekhnika, 1997, no 4, pp. 31–35.

9. Loshchinin A.A. Informatsionnye modeli territorial’nykh administrativnykh system [Information Models of Territorial Administrative Systems]. Informatsionnye tekhnologii v strukturakh gosudarstvennoy sluzhby, Moscow, RAGS, 1999.

10. Loshchinin A.A. Osnovy prikladnoy biznes-informatiki [Fundamentals of applied Business Informatics]. Saransk, 2017, 422 p.

11. Loshchinin A.A. CASE — sreda dlya informatizatsii administrativnykh sistem na osnove IPD-tekhnologii [CASE is an Environment for Informatization of Administrative Systems based on IPD technology]. Informatsionnye tekhnologii v strukturakh gosudarstvennoy sluzhby, Moscow, RAG S, 2001.

Cognitive Collective Convergent Engineering. Part II

DOI: 10.33917/es-6.192.2023.52-61

The article presents an analysis of the fundamental problems of civilizational transit with digital transformation of Industry 4.0 and forms the requirements for methodology and technologies for reassembling transdisciplinary engineering knowledge. The authors propose alternative solutions and counterintuitive approaches to transform reindustrialization based on innovative technologies of cognitive collective convergent engineering – C3 engineering, graph-centric platforms of digital genesis, tools, models and systems of collective intellectual work. The new global trend, proposed by Russia, represents the closing technologies of C3 engineering, which have a colossal socio-political resource of ensuring national sovereignty and leadership with the potential for global technological accession.

References:

5. Budanov V.G. Metodologiya sinergetiki v postneklassicheskoi nauke i v obrazovanii [Methodology of Synergetics in Post-non-classical Science and Education]. Izd. 4-e, dop. Moscow, LENAND, 2017, 272 p.

6. Budanov V.G. Obobshchennaya nauchnaya ratsional’nost’: istoki, struktura, perspektivy v tsifrovuyu epokhu: Antropomernost’ kak vyzov i otvet sovremennosti: Kollektivnaya monografiya [Generalized Scientific Rationality: Origins, Structure, Prospects in the Digital Age: Anthropomension as a Challenge and Response of Modernity: Collective Monograph]. Otv. red. V.G. Budanov. Kursk, Universitetskaya kniga, 2022, pp. 44–62.

7. #Gipergraf:Platforma, RKD [#Hypergraph:Platform, RKD]. Moscow, OOO “GiperGrafGrupp”, 2021.

8. Protocol of demonstration of the control system to representatives of the Kalashnikov Concern [Electronic resource], available at: https://7055ce99-63ff-

424d-ab7e-fe27c9fefd34.usrfiles.com/ugd/7055ce_a0898b7345e94386819200c0d4110432.pdf

9. Taxonomic analysis of mandatory reporting of credit organizations of the Central Bank of the Russian Federation [Electronic resource], available at: https://www.grafxm.ru/post/modernizaciya-sistemy-sbora-otchetnosti-kreditnyh-organizacij-v-cb-rf

10. NATO RTO protocols. NATO-RUSSIAN working platform on defense R&T co-operation [Electronic resource], available at: https://7055ce99-63ff-424dab7e-

fe27c9fefd34.usrfiles.com/ugd/7055ce_24f228929de04862aecb27ac452f559c.pdf

11. Expertise and reviews [Electronic resource]. M.: HyperGraphGroup LLC, 2021. URL: ht tps://www.gipergraf.ru/

Cognitive Collective Convergent Engineering. Part I

DOI: 10.33917/es-5.191.2023.100-109

The article presents an analysis of the fundamental problems of civilizational transit with digital transformation of Industry 4.0 and forms the requirements for methodology and technologies for reassembling transdisciplinary engineering knowledge. The authors propose alternative solutions and counterintuitive approaches to transform reindustrialization based on innovative technologies of cognitive collective convergent engineering – C3 engineering, graph-centric platforms of digital genesis, tools, models and systems of collective intellectual work. The new global trend, proposed by Russia, represents the closing technologies of C3 engineering, which have a colossal socio-political resource of ensuring national sovereignty and leadership with the potential for global technological accession.

References:

1. Kutin V.N. Poema “Dary Tvortsa (Cidempotentnyi monoid)” [Poem “Gifts of the Creator (Сommutative Idempotent Monoid)”]. 2023.

2. Kutin V.N., Khokhlova M.N. Epik feil tsifrovoi transformatsii BigTekha. Gde klyuch k level ap? [Epic Fail of BigTech Digital Transformation. Where is the Key to Level Up?]. Ekonomicheskie strategii, 2022, no 4, pp. 46–55, DOI: https://doi.org/10.33917/es-4.184.2022.46-55

3. Kutin V.N., Khokhlova M.N. Kak aitishniki “obuvayut” promyshlennikov. A u vas kakaya kollektsiya PPO [How IT Specialists “Shoe” Industrialists. What Kind of Software Collection do you have?]. GiperGrafGrupp, 2022, available at: ht tps://www.gipergraf.ru/kak-ajtishniki-obuvayut-promyshlenniko

4. Ma Khuaten. Tsifrovaya transformatsiya Kitaya. Opyt preobrazovaniya infrastruktury natsional’noi ekonomiki [Digital Transformation of China. Experience in Transforming the Infrastructure of the National Economy]. Moscow, Intellektual’naya literatura, 2019.

Architectural Engineering of Hybrid Models Incorporating Digital Twins and Machine Learning

DOI: 10.33917/es-5.191.2023.94-99

In modern engineering of complex technical systems [1] digital twins and artificial intelligence systems started to be applied, while these subsystems have their own methods and tools for systemic, mathematical and computer modeling. Lack of a normalized approach to combining data from disparate sub-systems into a single system results in a “one-off” assembly methodology or in creation of unique digital models and intelligent systems, which impedes their further transformation into more complex both technical and intelligent systems. In this regard, the search for a standard form of representing such subsystems into a single system becomes relevant, along with the task of developing a methodology for the unified design and production of intelligent systems based on the use of model-oriented system engineering [2, 3, 4]. The work names and systematizes methods and techniques for such developments, demonstrates a standard approach to a normalized platform representation of models of various subsystems, which initially have their own methods and presentation tools; results of a normalized policy for constructing a platform of models from various subsystems for an anthropomorphic robot and spacecraft are described. Within the framework of the presented example, complementary methods of digital multiphysics modeling, digital twins and machine learning are positioned.

References:

1. Romanov A.A. Prikladnoi sistemnyi inzhiniring [Applied Systems Engineering]. Moscow, FIZMATLIT, 2015.

2. Kondrat’ev V.V. Model’no-orientirovannyi sistemnyi inzhiniring 2.0 [Model-Based Systems Engineering 2.0]. Moscow, MFTI, 2021.

3. Garichev S.N., Gorbachev R.A., Davydenko E.V., Dzhaparov B.A., Kondrat’ev V.V. Model’no-orientirovannyi inzhiniring fiziko-tekhnicheskikh, informatsionnykh i intellektual’nykh system [Model-based Engineering of Physical, Technical, Information and Intelligent Systems]. Trudy MFTI, 2022, vol.

14, no 2.

4. Aleshchenko A.S., Klishev O.P., Kondrat’ev V.V., Rasskazov A.A. Sovmeshchenie arkhitekturnykh i matematicheskikh modelei v sistemnom inzhiniringe tekhnicheskikh system [Combination of Architectural and Mathematical Models in System Engineering of Technical Systems]. Kosmonavtika i raketostroenie, 2021, no 5.

5. Potyupkin A.Yu., Chechkin A.V. Iskusstvennyi intellekt. Na baze informatsionno-sistemnoi izbytochnosti [Artificial Intelligence. Based on InformationSystem Redundancy]. Mosc ow, Kurs, 2022.

6. GOST R 57700-37–2021. Komp’yuternye modeli i modelirovanie. Tsifrovye dvoiniki izdeliya. Obshchie polozheniya [GOST R 57700-37–2021. Computer

models and simulation. Digital twins of products. General provisions]. Kodeks. URL: https://docs.cntd.ru/document/1200180928

7. Borovkov A.I., Burdakov S.F., Klyavin O.I., et al. Komp’yuternyi inzhiniring [Computer Engineering]. Ucheb. posobie. Saint Petersburg, Izd-vo Politekhn.

un-ta, 2012.

8. Peredovye proizvodstvennye tekhnologii: vozmozhnosti dlya Rossii. Ekspertno-analiticheskii doklad: Monografiya [Advanced Manufacturing Technologies: Opportunities for Russia. Expert Analytical Report: Monograph]. Pod red. A.I. Borovkova. Saint Petersburg, Politekh-Press, 2020.